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The desirability of evaluating the effective potential in field theories near a phase transition has been
recognized in a number of different areas. We show that recent Monte Carlo simulations for the probability
distribution for the order parameter in an equilibrium Ising system, when combined with low-order renormal-
ization group results for an ordinarg* system, can be used to extract the effective potential. All scaling
features are included in the procegS1063-651X98)08709-1

PACS numbgs): 05.70.Jk, 64.60.Ak, 75.40.Mg

[. INTRODUCTION the nature of the polynomial strongly suggests a form incor-
porating thermodynamic scaling with exponents appropriate
In the realm of statistical physics, as well as in quantunto the Ising model. The rationale for this will be explored in
field theory, the need for non-perturbative approaches tonore depth in subsequent sections.
study the vicinity of a phase transition has long been appre- It should be noted that the renormalization group has been
ciated. Results of recent simulatiof$—4] show that the utilized previously to generate order parameter distributions
form of the effective potential for a variety of systems can bein the vicinity of the critical poin{4,8,9.. The principal nov-
determined using Monte Carlo methods. Such methods hawalty in this paper is the attempt to produce a unified form for
also been applied to the study of the electroweak phase tratthe order parameter distribution that fits data above, below,
sition[5]. Additional continuum limit work has recently been and at the critical point. It is found that the inclusion of the
performed on a ¢* theory in three dimensiorf§]. Extract-  prefactor mentioned above leads to excellent agreement with
ing the effective potential provides one with an additionaldata based on Monte Carlo simulations. The prefactor does
window onto the equilibrium—and possibly the dynamical— not play an important role in the fitting of a scaling form to
behavior of a system near and at its critical point. the order parameter distribution in the high- and low-
Binder [7] and more recently Tsypifil] and Chen and temperature phases. However, this finite size correction is
Dohm [8] utilized Monte Carlo and binning techniques to essential to the construction of a high-precision fit to data at
generate probability distributions of the order parameter othe critical point.
an O(1) (Ising-like) system in the vicinity of its critical Checks on the quality of the fit include comparisons of a
point. In Tsypin's work data were generated at a single temuniversal ratio of moments of the distribution with values in
perature, and over a range of symmetry-breaking fields ithe literature determined by a variety of alternative tech-
order to explore the full scaling domain. Above the critical niques, and comparison between our optimum fit value of the
temperature the distribution was found to be consistent withiourth-order couplingu with a variety of other determina-
a low-order polynomial form for the effective potential, tions of that quantity. These checks are very encouraging. It
which, as discussed below, is essentially the logarithm of thappears that a scaling form based on renormalized mean-field
probability distribution. The results of simulations were mosttheory (to be described belowagrees to a high degree of
closely fit when the effective potential was terminated at theaccuracy with published results. On this basis, one has con-
sixth order. The standard quartic Ginzburg-Landau form forfidence that an equation of state constructed in a similar
the effective potential failed to produce an adequate fit formanner from renormalized mean-field theory will accurately
any choice of coefficients, and the addition of eighth- anddescribe systems in th@(1), or Ising model, universality
higher-order terms did not materially improve the agreementlass.
between the fitting form and the results of simulations. The remainder of this paper is laid out as follows. In the
This remarkable set of results persists below the criticahext section the effective potential is defined and a phenom-
temperaturd2]. Here, it was found that a sixth-order poly- enological scaling description is presented. In Sec. lll a
nomial form for the effective potential leads to an outstand+enormalization-group derivation of the scaling form is
ing match to the results of simulations. In this case the bestgiven, and in the following section the “prefactor” is dis-
fit effective potential was found to contaimagativequartic ~ cussed. In Sec. V finite size effects are addressed, while Sec.
term. An additional feature of Tsypin’s fitting form is a pref- VI assesses the success of the scaling form of the effective
actor, proportional to the square root of the second derivativpotential as a fit to Tsypin's Monte Carlo simulations. Sec-
of the effective potential. tion VIl is devoted to concluding remarks. An Appendix
It is reasonable to ask whether or not the data are consigontains a discussion of the effect of the prefactor on an
tent with a scaling form for the effective potential. In fact, important universal quantity.
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Il. SCALING CONSIDERATIONS Heriticar LY M| 2Y/(@=2F ) = | |\ |~58, (2.9

We imagine a scalaiising-like) system described by or-
der parametetp and ordering fielch in equilibrium at tem-
peratureT. If the system is described by Hamiltoni&h( ¢)
the constrainedreduced free energyF(T,h;M), is given

by

Now, imagine that the reduced temperature is quite small.
The equilibrium correlation length, which can be expressed
asé(t,M), will under these circumstances appear to be con-
trolled by the finite value of the order paramebér Further
it will appear to diverge as thel is reduced, until being cut
off, for example, by the small but finite value tbfLikewise,
Z:exq—F(t,h;M)]:J DdpS(M—1(p))exd —H(p)IT], for appropriate values of the order paramdteat is, if the
(2.1) order parameter controls the decay of correlatidhs effec-
tive potential will behave in much the same way as it does at
wherel (¢)=Q"1f ¢d% is the average order in configura- the critical point. In view of Eq(2.8) a naive expectation
tion {¢}, Q represents the volume of the system, drid the ~ Would be that an attempt to approximate the effective poten-
dimensionality. The quantity is also proportional to the tial by a polynomial inM would yield something not too
infinite wavelength contribution to the spatial Fourier de-different fromM?®. Interestingly, this is precisely the result

composition of¢(F). The effective potential{ may be de- of Tsypin’s unbiased attempt to fit his simulation data to a
fined as polynomial effective potential: Afourth-order, Ginzburg-

Landau formfails to adequately represent the data, while the
Z=exp—H), (2.2)  coefficients of termdeyond sixth ordeare so small as to
cast doubt on their appearance in the true effective potential.
which identifies it with the constrained free enefd@]. Ac-  This result holds both above and below the critical
cording to standard scaling notions, when the linear esttent temperature—that is, whether the system is in the disordered
of the system is sufficiently great, the free enefgy,h) of ~ Or the ordered state.

an O(1) system will have the “generalized homogeneous” Now, the form(2.4) is expected to apply only when the

form order parameteM lies at—or close to—the value which
minimizes the free energy at fixagh. In particular, there
are known difficulties in applying the above scaling form

: (2.3 (2.4) to the case of a system in the coexistence region, which
impinge directly on the scaling regime. The equilibrium state

where the exponenh is equal tor(d+2—7)/2, d is the within the coexistence regimel €0, h=0) will generally
system’s spatial dimensionality, and the standard exponent§volve one or more interfacial regions separating two homo-
v and 5 are given below. The parameteris the reduced geneous thermodynamic phases of arbitrary volume fraction.
temperaturet=(T—T.)/T., whereT, is the critical tem- Bepause of this, the scaling form, which is hypothe5|zed for
perature, and the ordering, or symmetry-breaking, fieftas @ Singlehomogeneous phase, does not necessarily do an ad-
been introduced above. This scaling form, which arises frongduate job of describing the behavior of a system in which
an integration over the order parameltérin the constrained Wo different phases coexist. On the other hand, a scaling
partition function, is consistent with the following more gen- form ought to predict with great accuracy the dependence of

t
Ld|t|d"G(h|t|A, m

eral expression for the effective potential: thermodynamic functions on temperature and ordering field
as these fields approach the coexistence line, that is, at the
H(t,h,M)=L9M|2d(d=2+n) phase boundary for two-phase coexistence.

There is one more consequence of scaling that is worthy
of note. The scaling form in Ed2.4) together with correla-
(2.4 tion function scaling implies the following form for the free

energy[13,14:

><‘7:(I|M|72/u(d72+ ”),h|M|*(d+2* n)/(d72+77))_

The exponents and » appear in thgunconstrainedtwo- . G212 v (e 2— )2 ¢ ol )
point correlation functiorC(r —r",t,h), which, in the scal- H=G(ME @ 2rm2 ngldr2mmi2 gell | ¢4
ing regime, has the form

G M|t|*V(d*2+77)/27h|t|*V(d+2*77)/2,L|t|V, i )
C(R,t,h)=|R| @2+ De(|Rt",ht"@+2-12) (2.5 Il
(2.9
All thermodynamic exponents follow from the two correla-
tion function exponentsy and %, given the standard scaling In the first line of Eq.(2.9) the quantity¢ is the bulk corre-
and hyperscaling relationd 1]. When the spatial dimension- lation length ath=0.
ality is d=3, the critical exponents afé 2]

~ IIl. RENORMALIZATION-GROUP BASED FORM
v=0.63+0.002, (2.6) FOR THE EFFECTIVE POTENTIAL

7=0.037+0.001. (2.7 The general form in Eq(2.4) restricts, but does not
specify, the detailed dependence of the effective potehtial
An immediate consequence of expressi@r) is that the ont andh. Other considerations are required for an explicit
effective potential at bulk criticalityt=h=0) has the form evaluation. One candidate form is based on the renormaliza-
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tion group, particularly the field-theoretical expansionein fully consistent with scaling hypotheses and with lowest or-
=4-d, where, as aboval is the spatial dimensionality of der(in €) calculations of the equation of stdt&6].
the system. We consider a standaftl Hamiltonian The inclusion of higher-order, loop expansion contribu-
tions leads to modifications of the effective potential, so, on
1 . the face of it, there is no reason to expect that B will
T:f (E[(V¢)2+r¢z]+u¢4_h¢ dx. (3.) be exact. However, given that it is er?tirely consciE,tent with
critical point scaling, that it embodies the full RG trajecto-
At lowest nontrivial order irg, the effective potential has the ries, and that it represents the leading-order contribution in a
form [15,16] systematic renormalization-group expansion for the free en-
ergy, it seems at least a plausible “zeroth-order” candidate
for the critical effective potential. This optimism is bolstered
by other situations in which “renormalized mean-field
theory” provides surprisingly good numerical results when
applied in three dimensiorid7].

H(M ,t,h) — e*/*d %te(llv)/* MZe(d72+ 7 /*

+ ;M“ez(d’ﬂ”)/*—hMe/*d . (32

IV. THE PREFACTOR
This approximate effective potential is at the level of a ) . ] ]
renormalized Ginzburg-Landau free energy, and hence is_ In this section we discuss the prefactor introduced by
equivalent to “renormalized mean-field theory.” That is to Binder and Landafi18] and used by Tsypin in fitting Ising
say, the constrained free energy, as approximated by E§imulations[1,2]. A variety of arguments have been ad-
(3.2, has the same general form as mean-field theory, excepf@nced for the existence of this term. Here we introduce
for the coefficients oM, M2, andM*. The mean-field co- additional justification for the prefactor.
efficients, which depend on the temperature and magnetic SUPPose we allow spatial variations of the order param-
field in a relatively simple way, are replaced by coefficientséter around the globally constrained valie in the form
with more complicatedand as it turns out, impliditdepen- M+ a(k). Note that{o(k))=0. Neglecting terms of greater

dence on the physical fieldsandh. These new coefficients than quadratic order in the(k)’s, the dependence of the

give rise to a free energy that exhibits the full scaling prop-gttactive Hamiltonian on ther(IZ)’s at Gaussian order will
erties displayed in Eq2.4). The form(3.2) results from a

renormalization-grougRG) calculation, carried out to low-

est order in a loop expansion. A higher-order calculation H l;o(IZ)]
produces contributions to the effective potential explicitly at  —22uS =>
all orders in the quantityyl. The renormalization of coeffi- T k#0
cients, indeed the full effect of the renormalization-group 4.9

trajectories, resides in the quantiy” which plays the role  The term7" is the second derivative with respect to the
of the “block spin” size. This key quantity may be deter- o jer parameteM of the effective potential{ at renormal-
mined via[15] ized mean-field level discussed above. As noted, the sum
excludes thé&=0 mode of the order parameter fluctuations.
Integration over ther(IZ)'s yields the following “Gaussian”

The effective potential described by HS.2) along with Eq. ~ correction to the effective potential:
(3.3 is fully consistent with the scaling hypotheses embod-

1. .|, 1 I
5 Vo) 2+ 5 H'a(K)o(=K) |.

te"7” + 3uMZe -2t N =, (3.3

" 2 ” 2
ied in Eq.(2.4). It is completely determined once the cou- } H"+k Q d } H"+k
. TINe OnNee | > Zln — 7 | d% =In
pling constanu has been set, along with “metrical” factors 20 2 2w (2m) 2 2w
associated with the scales lofandt. .
On a technical level, the quanti* indicates where in- _ Eln(H—) 4.2
tegration of the renormalization-group flow equations is 2 \27)° '

stopped. Physically it is the value of the block spin parameter

at which the evaluation of the partition function via differen- As above () is the spatial volume of the system. The last
tial recursion relations is “matched” to perturbation theory term on the right hand side of E(4.2) is the leading-order
with a renormalized effective Hamiltonidd5]. This match-  difference between the sum on the left hand side and its
ing occurs when the correlation length in the effectiveasymptotic limit as the integral on the right. This term can be
Hamiltonian is of order unityi.e., the integration proceeds thought of as a finite size correction to the extensive result in
until the renormalized Hamiltonian is noncritizal\s this is  the limit, Q—o. A general feature of the prefactor that will
an intermediate step in the calculation, the precise value ddrove to be of some use shortly is its connection with the
/* ought to have no effect on the ultimate determination ofrenormalized mean-field susceptibility, It is straightfor-

the statistical mechanical properties of the systéRhis is ward to verify that the second derivative of the effective
analogous to choice of renormalization poirin fact, this  potential with respect to the order parameter is inversely re-
independence can be demonstrated order by order in the ré@ted to the susceptibility, i.e.,

evant expansion paramet@.g.,e=4—d). In practice, one

can establish optimal choices fat*. The combination of 1

Egs. (3.2 and (3.3 produces an effective potential that is HI(M)= x(M)* 4.3
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When the effective potential displays the effects of criticalensure that the size of the block spin does not exceed the
fluctuations, the derivation above acquires modificationsdimensions of the system. The new requirementdnis
specifically the inclusion of counterterms in a full
renormalization-group treatment. Most of the steps leadin
to this finite sizegcorrgction are as displayed abovg The fina?l te ™" + 3uM2eld-2F 177 4 T
result preserves the relationship between the prefactor and
the isothermal susceptibility implied by the above equationThe additional term in Eq(5.1) takes into account the fact

2

e =1. (5.0

Specifically, the new prefactor has the form that the size of a block spin should not exceed the physical
dimensions of the system of interest. This new term leads

H" 1 naturally to the incorporation of finite size scaling effects

om \/m (4.4 into the the statistical properties of the system of interest

[19]. The quantityc is a number of order unity. In principle,
At the level of renormalized mean-field theory, one can Writethe results of a calculation will ngt (_jepend on the specific
for the susceptibility value of ¢, as the value of/* is a detail of the
renormalization-group procedure, which has no effect on the

(2= )/ — v/ * Iy 4.5 final result[15]. In practice, the results that follow from the

' ' use of Eq.(5.1) depend sensitively on the choice of the pa-
wherey is the critical exponent for the isothermal suscepti-2@meterc. In the work reported here, this quantity thus ac-
bility (x=|t|~?). As noted previously, the quantity* is quires the status of a fittingnetrical parameter connecting
determined by Eq(3.3). the lattice size in the Ising simulations to the length param-

There is a more general argument for the existence of th8terL in the renormalization-group approach.
prefactor. This argument is based on the “infinitesimal” mo-
mentum shell version of the renormalization group used in VI. COMPARISON WITH DATA
the calculation of the partition function of the Ginzburg- ) ) )
Landau-Wilson modef20]. In this approach, modes at the  'ne effective potentia(3.2) is now compared to the re-
surface of a shrinking Brillouin zone are integrated out. The3ults of the Ising model simulations performed by Tsypin

contributions to the free energy have a Gaussian-like forml1—3l- Four data sets from Tsypin's simulations are fit, one
The key contribution to the net free energy is in the ordered phaseg{=0.2227), one in the disordered
(B4=0.220 55), and two at the critical temperature= T,

1 ) (B:=0.221 65). The data in the disordered phase are gath-
> Zk In[Z+k=]. (4.6 ered in a Monte Carlo investigation of the order parameter
distribution of a system of 58sing spins. In the case of the
ordered phase, the simulations were performed on a system
of 74 spins, while lattices of T6and 32 were used for the
simulations at criticality. The data are fit with the renormal-
ized mean-field approximation E€3.2) including the pref-
actor. The fitting procedure includes the use of the restriction
on/* obtained by solving the transcendental equatibri).
1 The overall normalization is set such that the area under our
Eln[Eo]. (4.7 curve matches that of Tsypin's histograms.

Our fitting procedure utilizes a grid-search minimization

In this term the restriction on the momenta of the fluctuationsf the x*(a) merit function.

contributing toX,, no longer differentiates the quantity from

the standard self-energ®,. Standard arguments suffice to — -1 [y(x;;a)—d]?

establish the connection between the the susceptibility and x(a)=g5 > Yz (6.9
the self-energy. If thé&k=0 term is added to the sum in Eq. ' !

(4.6), we end up with a sum ovall k that constitutes the
leading-order bulk contribution to the effective potential. It is
then necessary to perform a subtraction leading to a term i
the exponent of the forn}In[3o]=In\/x7. That the “sub-

X=¢€

In expression4.6), the self-energy termx, contains the ef-
fects of fluctuations whose wave vectors excked magni-
tude. If the uniform mode is singled out, the sum in E46)

is carried out over all nonzerk's. The one term that does
not contribute to the free energy is, thus, equal to

The parameter$a;} for the zeroth-order fit are, u, andc
];pat appear in Eqg3.2) and(5.1). Technically, this expres-
sion is thereducedy? since we divide by the number of

tracted” term appears in the exponent with a positive Signdegrees of freedon). D is the number of data bins less the

reflects the fact that the partition function is the exponentiaf1umber of free parameters. The errefsvere assumed to be

of minus the free energy. of Gaussian order; i.ea?=y(x; ;a).

As an initial effort to minimizéy?, ablind fitis performed
across all the histograms of a given data &eg., in the
disordered phase the seven histograms corresponding to the

There are other finite size effects. For example, there is aeven different values of the external fiéld See Table I. In
limit on the maximum possible size of a block spin in the this blind fit each bin of each histogram is treated with the
renormalization procedure. This limit appears as a modificasame weight. This procedure certainly leads to an unbiased
tion of Eq.(3.3. A limit on the block spin size, and hence minimization of Y2, but further fine tuning is required as
the quantity/™, is enforced if Eq(3.3) is modified so as to explained below.

V. FINITE SIZE EFFECTS
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TABLE I. The values of fitted parametetsu, andc obtained from the blind fits for four different data
sets.D is the number of degrees of freedom less free parameters. The stated errors are 68% confidence limits;
i.e., one standard deviation. Note that tffehere is not reduced.

T=T, T=T, T>T, T<T,
L 16 32 58 74

t o 0 0.00355 (00045 —0.00428 50071
u 0.225730%° 0.218 5502 0.230°5:504 0.232°390%

c 0.439°9% 0.459°3% 1.94" 5% 1.83"247

X2 376 141 1570 1230

D 126 126 534 442

#The reduced temperaturefizedat zero for theT =T, data sets.
®Due to the extremely weak dependence of the free energy on the variiibkie T+ T, phases there is a
large range of values within the 68% confidence limit.

It is important to note the similarity between the values of One expects that the scaling form for the free energy
u in both temperature regimes. In zeroth-order approxima¢combined with the prefactprshould provide a reasonable
tion we finduyg=0.230 andu,= 0.232 for the disordered and approximation to the free energy all temperature regimes
ordered phases, respectively. This is quite significant in thatising a single value ai andc. To this end, we search for a
Landau-Ginzburg theory dictates that the fourth-order couset of parameters that minimize tlyé for all data sets. The
pling be the same everywhere. Also note that the value of most effective strategy for accomplishing this task is to first
that best fits the data from the critical simulations is indeeddetermine a range of parametarsand ¢ that fit thet=0
zero, as expected. We do observe one anomaly in the best-flata. These bounds are then used for a three-parameter fit in
values of the reduced temperature in the ordered and disothe t>0 andt<0 phases which yields final values ©fu,
dered phases, however. Namely, if we compare the ratio adind c. It should be noted that a significant amount of

the temperatures we obtain “tweaking” of the parameters is necessary in addition to the
blind minimization of they?. These values are tabulated in
ty —0.829 Table Il and the resulting probability densities are plotted
-ty against Tsypin’s data in the three temperature regimes. The
plots are displayed in Figs. 1-3. It is interesting to note that
while from Tsypin’s simulation we have the ratio of temperatures discussed above is now
o _ BaBo_, e 9104,
—1 BO_BC T ~lo

_ . . .which is within 1% of Tsypin’s value.
This IS unfqrtunate as we expect this ratio to be the same in To further evaluate our scaling form we also calculate the
the simulations and our fit even though the temperature§ i ersal quantityf21,7]

themselves need not be.
An additional comment needs to be made for the fitting of 4,

the ordered phase data. Notice that in ltive0 histogram we S L
have removed the data lying to the left of the peak. Attempts 3s5F ¢ h=0.0000 u = 0.228
to fit the data in that regime did not produce satisfactory s, [ © h=0.00013 t = 0.00408
results. We attribute this failure to the fact that a single % 30| h=0.00038 ¢ =0.45
renormalized Ginzburg-Landau forfsuch as Eq(3.2)] is S 255 f Efggg??s
inappropriate to the region of two-phase coexistence. (=] . h _ 0:0027
2200 = h=0.0040
TABLE Il. The values of fitted parametets u, andc after = F Fit
constraining to fit all temperature regimes simultaneously. g 150
a8 f
T=T, T>T, T<T, 2 10f
o N 0, £
L 16, 32 58 74 BE et 4 U
t 0 0.003999%%  —0.00383 %5262 i ANVAYA
u 0.228 5905 0.228 505 0.228 0003 Mhr Ty 08 016 024 032 0.4
c 0.432' 55 0432535, 0432535, Magnetization
X2 2240 3050 3080
D 254 534 442 FIG. 1. The order parameter distribution in the disordered phase,
as obtained by Tsypifl] (data points and the results of the best
Ve fit bothL=16 andL =232 data sets simultaneously. constrained fit based on the effective Hamiltonian embodied in Egs.

®The reduced temperature is fixed at zero. (3.2 and(5.1).
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60 —+—+—1r+—+—— T TABLE lll. The value of the universal quantity/, calculated
L ] for d=3 Ising systems at=0 from various sources.
L ¢ h=0.0000 u = 0.228 ]
50 = - ]
2°F 100 L~ 00038S - : 2
% o n-oooty C=049 X .
g 40 C e h=0.0025 ﬁ $ : 3 Independent fit 16 —1.4218
S - Fit ﬁ% RN IR 1 Independent fit 32 —1.4082
> a0l PR T I S ] Constrained fft 16,32 —1.4267
= 00 g o e 7 i i
= C : 1 4 A ] Simulations
S ook A S 16 1.424(3)
220 = / 1S R yp! '
o i 5 s s 1 Tsypin[3] 32 —1.410(3)
e ob 57 L Barberet al. [22] 16 —1.4239(6)
- £ : 1 Barberet al. [22] 32 —1.4095(18)
. i s . %Here we calculatel', using the parametersi=0.228 andc

028 03 032 034 036 038 04 042 044 =0.432.

Magnetization

FIG. 2. The order parameter distribution in the ordered phase, ae renormalized fourth-order coupling in our fitting proce-
obtained by Tsypin1] (data points and the results of the best dure, the quality of agreement can be described as, at the
constrained fit based on the effective Hamiltonian embodied in Eqsvery least, encouraging.

(3.2 and(5.1).

A VII. CONCLUDING REMARKS
F4=ﬂ2lz —3. (6.2 We arrive at the conclusion that a low-order scaling form
(M%) provides an excellent fit to the order parameter distribution
both quite near the three-dimensional Ising model critical
) point and exactly at criticality. Our approximant, while at the
The values ofl’, from our calculations compared to other oest nontrivial order in the interdimensionelexpansion,
sources are tabulated in Table IIl. nonetheless includes full renormalization-group flows for the

As a final check on our results, we compare our best-fite|eyant variables and thus has critical pdimgped scaling
value of the renormalized coupling constantwith results it in. The scaling result is that at criticalityM

obtained by other methods. A variety of techniques have_p i2d/(d-2+» \yhere 2/(d—2+7)~5.8 is in close

been utilized to determine this universal quaptity, ?”CIUdingagreement with Tsypin'e2,1] polynomial fit. That this ought
the e expansion[23], high-order loop expansions in three y'he o4 follows from straightforward scaling arguments.

dimensions[24-26, Monte Carlo simulations, and high-  1e fitting parameters used were the nonuniversal metri-
:ﬁ?&%g};’;g q Sgﬁfﬁg'r dzrecfglj%mrgngﬁgta\ﬁu;? g%f ;?Oemcal factors for the reduced temperatutethe fourth-order

- O ; coupling constant, and the parameter, which controls the
0'2.3'3 [25] ﬁ°b0‘|2?6[2_4]'2T2h'_‘°‘ IS toTbeblco:Tpared W'rt]h OUT effects of finite size on the determination of the quantity
optimum global fitu=0.228; see Table Il. Given that no tErough the relationship Eq5.1). This is certainly fewer

attempt was made to match previously determined values Yhan allowed: thep* model and the Ising model are presum-
ably in the same universality class, but are not identical. We
] also took the coupling to be constant. However, there is no
= 0.228] reason to believe that the Ising model at criticality is at its
=0 1 fixed point for coupling constants. Hence, corrections to
. 5 @ ¢=0.45] scaling should certainly be allowed, which in practice would
s & LA ] mean the renormalization-group flow for the fourth-order
: : - N couplingu(#) could be included. We have chosen not to do
f%ﬁ‘%‘ % ] bﬁ’% 1 so in order to minimize the number of free parameters.

2.5 T T T T T T T T T T T T T T T

el fo
! a5

N

6 u
2 & St
C

-
on

s 0% . £ 5 1 The prefactor used by Bindgd8] and Tsypin[1,2] is
o ° w & ¢ "<3 o discussed in Sec. IV within the setting of a renormalization-
§ A\%\w/ ) 1 group calculation. While this prefactor has only limited ef-
S 1 fect on the quality of fits in the high- and low-temperature
s g Lo ] phases, it plays a crucial role at the critical point. This issue
: B ? is discussed in more depth in the Appendix, where the influ-
A O?m L"'&; ence of the prefactor on the universal ralig is also ex-
-0.48 -0.24 0 0.24 0.48 plored. . .
Magnetization T_he fact that a Iow-order-l_ra-expressmn for the renor-
malized free energy of the Ising system reproduces simula-
FIG. 3. The order parameter distribution of the systerh=ap,  tion data to such a high degree of accuracy has encouraging

as obtained by TsypifB] and the results of the fit using Eq8.2) implications with respect to the derivation of an equation of
and(5.1). We include both the f6and 32 systems on the plot. state applicable to a®(1) system in the immediate vicinity

Probability Density

o
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of a critical point. In addition, there is every reason to be (= _ AM2d(d-2+ 7)
hopeful that low-order corrections to the zero loop expres—J MPe dM
sion utilized in this work will allow for an even higher-

precision fit to data. A (D24 gy d—2+7
2d
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] Whend=3 and#=0.037, one find$',= —0.987 593. As a
APPENDIX: EFFECT OF THE PREFACTOR ON T comparison, the unrenormalized Ginzburg-Landau theory
The prefactor represents a finite size correction to the fre@redictsI’;=—0.811 56. By contrast, numerical studies in-
energy. To see that this is so, it suffices to exponentiate thdicatel’;=—1.4[3,22]. While renormalization of the theory
prefactor. The contribution of the prefactor to the free energythangesl’, in the right direction, the full scaling form is
is nominally independent of the size of the system, while thdn@dequate to the challenge of reproducing the correct value
leading-order terms scale as the system’s volume. Clearly, iff this quantity. o -
the thermodynamic limit, the prefactor is swamped by those . The defect in the aboye analysis lies in the fact that fl_nlte
terms. Nevertheless, the prefactor cannot be ignored, even ﬁ?e effects have been ignored. These effects are crucial at
the volume approaches infinity. That this is so is evident e critical point, where the bulk correlation length is infinite.

h ot ¢ th d ter distributi t th As it turns out, the most important finite size effect is the
when oné plots out the order parameter distribution a ?Drefactor. The influence of the prefactor is dramatically high-
critical point. Given Eq(2.4), neglect of the prefactor leads jispeq when one ignores the finite size contribution to Eq.
to an order parameter distribution at the critical point ( (5.1) for /* . If the coefficient is set equal to zero, then one
=0, h=0) that has the form finds immediately

(A3)

P(M)oce-ALIMZE-2) (A1) e =(3uM2) Ud-2+ ), (A4)

This means that the order parameter distribution is of the

Such a distribution does not manifest one important featuréorm

of the critical point order parameter distribution, and that is a _ oy oy
depression in the neighborhoodMf= 0. The absence of this P(M)oME 257 ex] — kM 2HET25 7], (A5)
feature has an effect on the fit to data, and in addition, on th&he quantityx in the above equation is a combination of the
quantity I'y, defined in Eq.(6.2. As an indication of the size of the systent,, and the fourth-order coupling constant
importance of the prefactor on this universal ratio, we firstu. This quantity scales out of the result fby, in the same
calculate its value in the absence of this contribution. Weway that the constark divided out in the ratio in Eq(A3).
make use of the general relationship The result forl', following from Eg. (A5) is then

T([2— 5+5(d—2+ )]2AT [2— 5+ (d—2+ 5)]/2d)
- F((2—7+3(d—2+ 75)]/2d) -3

Iy (A6)

Inserting appropriate values fdrand » into Eq. (A6), we obtain d',= —1.691 47. In utilizing the prefactor as tkelefinite
size correction, we have overshot the proper valug ofNote, however, that the value obtainedridependent of system size
Even though the prefactor is a finite size correction to the free energy, in the cdsgibfs fully as important as the
“leading-order” contributions to the order parameter distribution.

As for the distributionP(M), it is immediately evident that the prefactor leads to a depression in the neighborhood of
M =0. In fact, the order parameter distribution is forced to go to zefd at0 by the prefactor in EqA5). This is a more
pronounced effect than is desired. The suppression of the order parameter distribution is reduced when finite size effects are
restored to Eq(5.1). It is the combination of these latter finite size effects and the finite size correction embodied in the
prefactor that yields a proper order parameter distribution at the critical point and a valugetloét is in agreement with
previous determinations of this quantity.
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