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Effective potential, critical point scaling, and the renormalization group
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The desirability of evaluating the effective potential in field theories near a phase transition has been
recognized in a number of different areas. We show that recent Monte Carlo simulations for the probability
distribution for the order parameter in an equilibrium Ising system, when combined with low-order renormal-
ization group results for an ordinaryf4 system, can be used to extract the effective potential. All scaling
features are included in the process.@S1063-651X~98!08709-1#

PACS number~s!: 05.70.Jk, 64.60.Ak, 75.40.Mg
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I. INTRODUCTION

In the realm of statistical physics, as well as in quant
field theory, the need for non-perturbative approaches
study the vicinity of a phase transition has long been app
ciated. Results of recent simulations@1–4# show that the
form of the effective potential for a variety of systems can
determined using Monte Carlo methods. Such methods h
also been applied to the study of the electroweak phase
sition @5#. Additional continuum limit work has recently bee
performed on alf4 theory in three dimensions@6#. Extract-
ing the effective potential provides one with an addition
window onto the equilibrium—and possibly the dynamical
behavior of a system near and at its critical point.

Binder @7# and more recently Tsypin@1# and Chen and
Dohm @8# utilized Monte Carlo and binning techniques
generate probability distributions of the order parameter
an O(1) ~Ising-like! system in the vicinity of its critical
point. In Tsypin’s work data were generated at a single te
perature, and over a range of symmetry-breaking fields
order to explore the full scaling domain. Above the critic
temperature the distribution was found to be consistent w
a low-order polynomial form for the effective potentia
which, as discussed below, is essentially the logarithm of
probability distribution. The results of simulations were mo
closely fit when the effective potential was terminated at
sixth order. The standard quartic Ginzburg-Landau form
the effective potential failed to produce an adequate fit
any choice of coefficients, and the addition of eighth- a
higher-order terms did not materially improve the agreem
between the fitting form and the results of simulations.

This remarkable set of results persists below the crit
temperature@2#. Here, it was found that a sixth-order poly
nomial form for the effective potential leads to an outstan
ing match to the results of simulations. In this case the b
fit effective potential was found to contain anegativequartic
term. An additional feature of Tsypin’s fitting form is a pre
actor, proportional to the square root of the second deriva
of the effective potential.

It is reasonable to ask whether or not the data are con
tent with a scaling form for the effective potential. In fac
PRE 581063-651X/98/58~3!/2902~8!/$15.00
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the nature of the polynomial strongly suggests a form inc
porating thermodynamic scaling with exponents appropr
to the Ising model. The rationale for this will be explored
more depth in subsequent sections.

It should be noted that the renormalization group has b
utilized previously to generate order parameter distributio
in the vicinity of the critical point@4,8,9#. The principal nov-
elty in this paper is the attempt to produce a unified form
the order parameter distribution that fits data above, bel
and at the critical point. It is found that the inclusion of th
prefactor mentioned above leads to excellent agreement
data based on Monte Carlo simulations. The prefactor d
not play an important role in the fitting of a scaling form
the order parameter distribution in the high- and lo
temperature phases. However, this finite size correction
essential to the construction of a high-precision fit to data
the critical point.

Checks on the quality of the fit include comparisons o
universal ratio of moments of the distribution with values
the literature determined by a variety of alternative tec
niques, and comparison between our optimum fit value of
fourth-order couplingu with a variety of other determina
tions of that quantity. These checks are very encouraging
appears that a scaling form based on renormalized mean-
theory ~to be described below! agrees to a high degree o
accuracy with published results. On this basis, one has c
fidence that an equation of state constructed in a sim
manner from renormalized mean-field theory will accurat
describe systems in theO(1), or Ising model, universality
class.

The remainder of this paper is laid out as follows. In t
next section the effective potential is defined and a phen
enological scaling description is presented. In Sec. II
renormalization-group derivation of the scaling form
given, and in the following section the ‘‘prefactor’’ is dis
cussed. In Sec. V finite size effects are addressed, while
VI assesses the success of the scaling form of the effec
potential as a fit to Tsypin’s Monte Carlo simulations. Se
tion VII is devoted to concluding remarks. An Append
contains a discussion of the effect of the prefactor on
important universal quantity.
2902 © 1998 The American Physical Society
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II. SCALING CONSIDERATIONS

We imagine a scalar~Ising-like! system described by or
der parameterf and ordering fieldh in equilibrium at tem-
peratureT. If the system is described by HamiltonianH(f)
the constrained~reduced! free energy,F(T,h;M ), is given
by

Z5exp@2F~ t,h;M !#5E Dfd„M2I ~f!…exp@2H~f!/T#,

~2.1!

whereI (f)[V21*fddx is the average order in configura
tion $f%, V represents the volume of the system, andd is the
dimensionality. The quantityM is also proportional to the
infinite wavelength contribution to the spatial Fourier d
composition off(rW). The effective potentialH may be de-
fined as

Z5exp~2H!, ~2.2!

which identifies it with the constrained free energy@10#. Ac-
cording to standard scaling notions, when the linear extenL
of the system is sufficiently great, the free energyF(t,h) of
an O(1) system will have the ‘‘generalized homogeneou
form

LdutudnGS hutu2D,
t

utu D , ~2.3!

where the exponentD is equal ton(d122h)/2, d is the
system’s spatial dimensionality, and the standard expon
n and h are given below. The parametert is the reduced
temperature,t5(T2Tc)/Tc , where Tc is the critical tem-
perature, and the ordering, or symmetry-breaking, fieldh has
been introduced above. This scaling form, which arises fr
an integration over the order parameterM in the constrained
partition function, is consistent with the following more ge
eral expression for the effective potential:

H~ t,h,M !5LduM u2d/~d221h!

3F~ tuM u22/n~d221h!,huM u2~d122h!/~d221h!!.

~2.4!

The exponentsn and h appear in the~unconstrained! two-
point correlation functionC(rW2rW8,t,h), which, in the scal-
ing regime, has the form

C~RW ,t,h!5uRW u2~d221h!C~ uRW utn,ht2n~d122h!/2!. ~2.5!

All thermodynamic exponents follow from the two correl
tion function exponents,n andh, given the standard scalin
and hyperscaling relations@11#. When the spatial dimension
ality is d53, the critical exponents are@12#

n50.6360.002, ~2.6!

h50.03760.001. ~2.7!

An immediate consequence of expression~2.4! is that the
effective potential at bulk criticality (t5h50) has the form
-

’

ts

Hcritical}LduM u2d/~d221h!5LduM u'5.8. ~2.8!

Now, imagine that the reduced temperature is quite sm
The equilibrium correlation length, which can be express
asj(t,M ), will under these circumstances appear to be c
trolled by the finite value of the order parameterM . Further
it will appear to diverge as theM is reduced, until being cu
off, for example, by the small but finite value oft. Likewise,
for appropriate values of the order parameter~that is, if the
order parameter controls the decay of correlations! the effec-
tive potential will behave in much the same way as it does
the critical point. In view of Eq.~2.8! a naive expectation
would be that an attempt to approximate the effective pot
tial by a polynomial inM would yield something not too
different from M6. Interestingly, this is precisely the resu
of Tsypin’s unbiased attempt to fit his simulation data to
polynomial effective potential: Afourth-order, Ginzburg-
Landau formfails to adequately represent the data, while t
coefficients of termsbeyond sixth orderare so small as to
cast doubt on their appearance in the true effective poten
This result holds both above and below the critic
temperature—that is, whether the system is in the disorde
or the ordered state.

Now, the form~2.4! is expected to apply only when th
order parameterM lies at—or close to—the value whic
minimizes the free energy at fixedt,h. In particular, there
are known difficulties in applying the above scaling for
~2.4! to the case of a system in the coexistence region, wh
impinge directly on the scaling regime. The equilibrium sta
within the coexistence regime (T,0, h50! will generally
involve one or more interfacial regions separating two hom
geneous thermodynamic phases of arbitrary volume fract
Because of this, the scaling form, which is hypothesized
a singlehomogeneous phase, does not necessarily do an
equate job of describing the behavior of a system in wh
two different phases coexist. On the other hand, a sca
form ought to predict with great accuracy the dependence
thermodynamic functions on temperature and ordering fi
as these fields approach the coexistence line, that is, a
phase boundary for two-phase coexistence.

There is one more consequence of scaling that is wo
of note. The scaling form in Eq.~2.4! together with correla-
tion function scaling implies the following form for the fre
energy@13,14#:

H5Ĝ~Mj~d221h!/2,hj~d122h!/2,tj1/n,Lj21!

5ĜS M utu2n~d221h!/2,hutu2n~d122h!/2,Lutun,
t

utu D .

~2.9!

In the first line of Eq.~2.9! the quantityj is thebulk corre-
lation length ath50.

III. RENORMALIZATION-GROUP BASED FORM
FOR THE EFFECTIVE POTENTIAL

The general form in Eq.~2.4! restricts, but does no
specify, the detailed dependence of the effective potentiaH
on t andh. Other considerations are required for an expli
evaluation. One candidate form is based on the renorma
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tion group, particularly the field-theoretical expansion ine
542d, where, as above,d is the spatial dimensionality o
the system. We consider a standardf4 Hamiltonian

2H

T
5E S 1

2
@~¹W f!21rf2#1uf42hf Dddx. ~3.1!

At lowest nontrivial order ine, the effective potential has th
form @15,16#

H~M ,t,h!5e2l * dF1

2
te~1/n!l * M2e~d221h!l *

1
u

4
M4e2~d221h!l * 2hMel * dG . ~3.2!

This approximate effective potential is at the level of
renormalizedGinzburg-Landau free energy, and hence
equivalent to ‘‘renormalized mean-field theory.’’ That is
say, the constrained free energy, as approximated by
~3.2!, has the same general form as mean-field theory, ex
for the coefficients ofM , M2, andM4. The mean-field co-
efficients, which depend on the temperature and magn
field in a relatively simple way, are replaced by coefficien
with more complicated~and as it turns out, implicit! depen-
dence on the physical fieldst andh. These new coefficients
give rise to a free energy that exhibits the full scaling pro
erties displayed in Eq.~2.4!. The form ~3.2! results from a
renormalization-group~RG! calculation, carried out to low-
est order in a loop expansion. A higher-order calculat
produces contributions to the effective potential explicitly
all orders in the quantityM . The renormalization of coeffi-
cients, indeed the full effect of the renormalization-gro
trajectories, resides in the quantityel * which plays the role
of the ‘‘block spin’’ size. This key quantity may be dete
mined via@15#

te~1/n!l * 13uM2e~d221h!l * 51. ~3.3!

The effective potential described by Eq.~3.2! along with Eq.
~3.3! is fully consistent with the scaling hypotheses embo
ied in Eq. ~2.4!. It is completely determined once the co
pling constantu has been set, along with ‘‘metrical’’ factor
associated with the scales ofh and t.

On a technical level, the quantityl * indicates where in-
tegration of the renormalization-group flow equations
stopped. Physically it is the value of the block spin parame
at which the evaluation of the partition function via differe
tial recursion relations is ‘‘matched’’ to perturbation theo
with a renormalized effective Hamiltonian@15#. This match-
ing occurs when the correlation length in the effecti
Hamiltonian is of order unity~i.e., the integration proceed
until the renormalized Hamiltonian is noncritical!. As this is
an intermediate step in the calculation, the precise valu
l * ought to have no effect on the ultimate determination
the statistical mechanical properties of the system.~This is
analogous to choice of renormalization point.! In fact, this
independence can be demonstrated order by order in the
evant expansion parameter~e.g.,e542d!. In practice, one
can establish optimal choices forl * . The combination of
Eqs. ~3.2! and ~3.3! produces an effective potential that
s
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fully consistent with scaling hypotheses and with lowest
der ~in e! calculations of the equation of state@16#.

The inclusion of higher-order, loop expansion contrib
tions leads to modifications of the effective potential, so,
the face of it, there is no reason to expect that Eq.~3.2! will
be exact. However, given that it is entirely consistent w
critical point scaling, that it embodies the full RG traject
ries, and that it represents the leading-order contribution
systematic renormalization-group expansion for the free
ergy, it seems at least a plausible ‘‘zeroth-order’’ candid
for the critical effective potential. This optimism is bolstere
by other situations in which ‘‘renormalized mean-fie
theory’’ provides surprisingly good numerical results wh
applied in three dimensions@17#.

IV. THE PREFACTOR

In this section we discuss the prefactor introduced
Binder and Landau@18# and used by Tsypin in fitting Ising
simulations @1,2#. A variety of arguments have been a
vanced for the existence of this term. Here we introdu
additional justification for the prefactor.

Suppose we allow spatial variations of the order para
eter around the globally constrained valueM in the form
M1s(kW ). Note that̂ s(kW )&50. Neglecting terms of greate
than quadratic order in thes(kW )’s, the dependence of th
effective Hamiltonian on thes(kW )’s at Gaussian order will
be

HGauss@s~kW !#

T
5 (

kWÞ0
F1

2 U¹W s~kW !U21
1

2
H 9s~kW !s~2kW !G .

~4.1!

The termH 9 is the second derivative with respect to th
order parameterM of the effective potentialH at renormal-
ized mean-field level discussed above. As noted, the s

excludes thekW50W mode of the order parameter fluctuation
Integration over thes(kW )’s yields the following ‘‘Gaussian’’
correction to the effective potential:

(
kWÞ0

1

2
lnSH 91k2

2p D→ V

~2p!d E ddk
1

2
lnSH 91k2

2p D
2

1

2
lnSH 9

2p D . ~4.2!

As above,V is the spatial volume of the system. The la
term on the right hand side of Eq.~4.2! is the leading-order
difference between the sum on the left hand side and
asymptotic limit as the integral on the right. This term can
thought of as a finite size correction to the extensive resu
the limit, V→`. A general feature of the prefactor that wi
prove to be of some use shortly is its connection with
renormalized mean-field susceptibility,x. It is straightfor-
ward to verify that the second derivative of the effecti
potential with respect to the order parameter is inversely
lated to the susceptibility, i.e.,

H 9~M !5
1

x~M !
. ~4.3!
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When the effective potential displays the effects of critic
fluctuations, the derivation above acquires modificatio
specifically the inclusion of counterterms in a fu
renormalization-group treatment. Most of the steps lead
to this finite size correction are as displayed above. The fi
result preserves the relationship between the prefactor
the isothermal susceptibility implied by the above equati
Specifically, the new prefactor has the form

AH 9

2p
5

1

A2px
. ~4.4!

At the level of renormalized mean-field theory, one can wr
for the susceptibility

x5e~22h!l * 5egl * /n, ~4.5!

whereg is the critical exponent for the isothermal suscep
bility ( x}utu2g). As noted previously, the quantityl * is
determined by Eq.~3.3!.

There is a more general argument for the existence of
prefactor. This argument is based on the ‘‘infinitesimal’’ m
mentum shell version of the renormalization group used
the calculation of the partition function of the Ginzbur
Landau-Wilson model@20#. In this approach, modes at th
surface of a shrinking Brillouin zone are integrated out. T
contributions to the free energy have a Gaussian-like fo
The key contribution to the net free energy is

1

2 (
k

ln@Sk1k2#. ~4.6!

In expression~4.6!, the self-energy termSk contains the ef-
fects of fluctuations whose wave vectors exceedk in magni-
tude. If the uniform mode is singled out, the sum in Eq.~4.6!
is carried out over all nonzerok’s. The one term that doe
not contribute to the free energy is, thus, equal to

1

2
ln@S0#. ~4.7!

In this term the restriction on the momenta of the fluctuatio
contributing toS0 no longer differentiates the quantity from
the standard self-energy,S. Standard arguments suffice
establish the connection between the the susceptibility
the self-energy. If thek50 term is added to the sum in Eq
~4.6!, we end up with a sum overall k that constitutes the
leading-order bulk contribution to the effective potential. It
then necessary to perform a subtraction leading to a term
the exponent of the form1

2 ln@S0#5lnAxT. That the ‘‘sub-
tracted’’ term appears in the exponent with a positive s
reflects the fact that the partition function is the exponen
of minus the free energy.

V. FINITE SIZE EFFECTS

There are other finite size effects. For example, there
limit on the maximum possible size of a block spin in t
renormalization procedure. This limit appears as a modifi
tion of Eq. ~3.3!. A limit on the block spin size, and henc
the quantityl * , is enforced if Eq.~3.3! is modified so as to
l
,
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ensure that the size of the block spin does not exceed
dimensions of the system. The new requirement onl * is

te~1/n!l * 13uM2e~d221h!l * 1S c

L D 2

e2l * 51. ~5.1!

The additional term in Eq.~5.1! takes into account the fac
that the size of a block spin should not exceed the phys
dimensions of the system of interest. This new term le
naturally to the incorporation of finite size scaling effec
into the the statistical properties of the system of inter
@19#. The quantityc is a number of order unity. In principle
the results of a calculation will not depend on the spec
value of c, as the value of l * is a detail of the
renormalization-group procedure, which has no effect on
final result@15#. In practice, the results that follow from th
use of Eq.~5.1! depend sensitively on the choice of the p
rameterc. In the work reported here, this quantity thus a
quires the status of a fittingmetrical parameter connecting
the lattice size in the Ising simulations to the length para
eterL in the renormalization-group approach.

VI. COMPARISON WITH DATA

The effective potential~3.2! is now compared to the re
sults of the Ising model simulations performed by Tsyp
@1–3#. Four data sets from Tsypin’s simulations are fit, o
in the ordered phase (bo50.2227), one in the disordere
(bd50.220 55), and two at the critical temperatureT5Tc
(bc50.221 65). The data in the disordered phase are g
ered in a Monte Carlo investigation of the order parame
distribution of a system of 583 Ising spins. In the case of th
ordered phase, the simulations were performed on a sys
of 743 spins, while lattices of 163 and 323 were used for the
simulations at criticality. The data are fit with the renorma
ized mean-field approximation Eq.~3.2! including the pref-
actor. The fitting procedure includes the use of the restrict
on l * obtained by solving the transcendental equation,~5.1!.
The overall normalization is set such that the area under
curve matches that of Tsypin’s histograms.

Our fitting procedure utilizes a grid-search minimizatio
of the x̃2(aW ) merit function.

x̃2~aW !5
1

D (
i

@y~xi ;aW !2di #
2

s i
2 . ~6.1!

The parameters$a j% for the zeroth-order fit aret, u, andc
that appear in Eqs.~3.2! and ~5.1!. Technically, this expres-
sion is thereducedx̃2 since we divide by the number o
degrees of freedom,D. D is the number of data bins less th
number of free parameters. The errorss i were assumed to be
of Gaussian order; i.e.,s i

25y(xi ;aW ).
As an initial effort to minimizex̃2, ablind fit is performed

across all the histograms of a given data set~e.g., in the
disordered phase the seven histograms corresponding to
seven different values of the external fieldh!. See Table I. In
this blind fit each bin of each histogram is treated with t
same weight. This procedure certainly leads to an unbia
minimization of x̃2, but further fine tuning is required a
explained below.
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TABLE I. The values of fitted parameterst, u, andc obtained from the blind fits for four different dat
sets.D is the number of degrees of freedom less free parameters. The stated errors are 68% confidenc
i.e., one standard deviation. Note that thex2 here is not reduced.

T5Tc T5Tc T.Tc T,Tc

L 16 32 58 74
t 0a 0 0.0035520.00045

10.00055 20.0042820.00112
10.00048

u 0.22520.007
10.005 0.21820.005

10.005 0.23020.004
10.004 0.23220.003

10.006

c 0.43920.03
10.04 0.45920.03

10.03 1.9421.94
11.86b 1.8321.83

12.17

x2 376 141 1570 1230
D 126 126 534 442

aThe reduced temperature isfixedat zero for theT5Tc data sets.
bDue to the extremely weak dependence of the free energy on the variablec in the TÞTc phases there is a
large range of values within the 68% confidence limit.
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It is important to note the similarity between the values
u in both temperature regimes. In zeroth-order approxim
tion we findud50.230 anduo50.232 for the disordered an
ordered phases, respectively. This is quite significant in
Landau-Ginzburg theory dictates that the fourth-order c
pling be the same everywhere. Also note that the valuet
that best fits the data from the critical simulations is inde
zero, as expected. We do observe one anomaly in the be
values of the reduced temperature in the ordered and d
dered phases, however. Namely, if we compare the rati
the temperatures we obtain

td

2to
50.829

while from Tsypin’s simulation we have

td

2to
52

bd2bc

bo2bc
51.05.

This is unfortunate as we expect this ratio to be the sam
the simulations and our fit even though the temperatu
themselves need not be.

An additional comment needs to be made for the fitting
the ordered phase data. Notice that in theh50 histogram we
have removed the data lying to the left of the peak. Attem
to fit the data in that regime did not produce satisfact
results. We attribute this failure to the fact that a sing
renormalized Ginzburg-Landau form@such as Eq.~3.2!# is
inappropriate to the region of two-phase coexistence.

TABLE II. The values of fitted parameterst, u, and c after
constraining to fit all temperature regimes simultaneously.

T5Tc T.Tc T,Tc

L 16, 32a 58 74
t 0b 0.0039920.0006

10.0003 20.0038320.0004
10.0002

u 0.22820.009
10.004 0.22820.005

10.008 0.22820.003
10.006

c 0.43220.05
10.10 0.43220.432

12.5 0.43220.432
12.5

x2 2240 3050 3080
D 254 534 442

aWe fit bothL516 andL532 data sets simultaneously.
bThe reduced temperature is fixed at zero.
f
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-fit
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f
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One expects that the scaling form for the free ene
~combined with the prefactor! should provide a reasonabl
approximation to the free energy inall temperature regimes
using a single value ofu andc. To this end, we search for
set of parameters that minimize thex2 for all data sets. The
most effective strategy for accomplishing this task is to fi
determine a range of parametersu and c that fit the t50
data. These bounds are then used for a three-parameter
the t.0 andt,0 phases which yields final values oft, u,
and c. It should be noted that a significant amount
‘‘tweaking’’ of the parameters is necessary in addition to t
blind minimization of thex2. These values are tabulated
Table II and the resulting probability densities are plott
against Tsypin’s data in the three temperature regimes.
plots are displayed in Figs. 1–3. It is interesting to note t
the ratio of temperatures discussed above is now

td

2to
51.04,

which is within 1% of Tsypin’s value.
To further evaluate our scaling form we also calculate

universal quantity@21,7#

FIG. 1. The order parameter distribution in the disordered pha
as obtained by Tsypin@1# ~data points! and the results of the bes
constrained fit based on the effective Hamiltonian embodied in E
~3.2! and ~5.1!.
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G45
^M4&

~^M2&!2 23. ~6.2!

The values ofG4 from our calculations compared to oth
sources are tabulated in Table III.

As a final check on our results, we compare our bes
value of the renormalized coupling constantu with results
obtained by other methods. A variety of techniques ha
been utilized to determine this universal quantity, includi
the e expansion@23#, high-order loop expansions in thre
dimensions@24–26#, Monte Carlo simulations, and high
temperature series@27#. Recently reported values of th
renormalized fourth-order coupling constant range fr
0.233 @25# to 0.236 @24#. This is to be compared with ou
optimum global fitu50.228; see Table II. Given that n
attempt was made to match previously determined value

FIG. 3. The order parameter distribution of the system att50,
as obtained by Tsypin@3# and the results of the fit using Eqs.~3.2!
and ~5.1!. We include both the 163 and 323 systems on the plot.

FIG. 2. The order parameter distribution in the ordered phase
obtained by Tsypin@1# ~data points! and the results of the bes
constrained fit based on the effective Hamiltonian embodied in E
~3.2! and ~5.1!.
t

e

of

the renormalized fourth-order coupling in our fitting proc
dure, the quality of agreement can be described as, at
very least, encouraging.

VII. CONCLUDING REMARKS

We arrive at the conclusion that a low-order scaling fo
provides an excellent fit to the order parameter distribut
both quite near the three-dimensional Ising model criti
point and exactly at criticality. Our approximant, while at th
lowest nontrivial order in the interdimensionale expansion,
nonetheless includes full renormalization-group flows for
relevant variables and thus has critical point~hyper! scaling
built in. The scaling result is that at criticalityH
;uM u2d/(d221h), where 2d/(d221h);5.8 is in close
agreement with Tsypin’s@2,1# polynomial fit. That this ought
to be so follows from straightforward scaling arguments.

The fitting parameters used were the nonuniversal me
cal factors for the reduced temperaturet, the fourth-order
coupling constantu, and the parameterc, which controls the
effects of finite size on the determination of the quantityl *
through the relationship Eq.~5.1!. This is certainly fewer
than allowed; thef4 model and the Ising model are presum
ably in the same universality class, but are not identical.
also took the couplingu to be constant. However, there is n
reason to believe that the Ising model at criticality is at
fixed point for coupling constants. Hence, corrections
scaling should certainly be allowed, which in practice wou
mean the renormalization-group flow for the fourth-ord
couplingu(l ) could be included. We have chosen not to
so in order to minimize the number of free parameters.

The prefactor used by Binder@18# and Tsypin@1,2# is
discussed in Sec. IV within the setting of a renormalizatio
group calculation. While this prefactor has only limited e
fect on the quality of fits in the high- and low-temperatu
phases, it plays a crucial role at the critical point. This iss
is discussed in more depth in the Appendix, where the in
ence of the prefactor on the universal ratioG4 is also ex-
plored.

The fact that a low-order-in-e expression for the renor
malized free energy of the Ising system reproduces sim
tion data to such a high degree of accuracy has encoura
implications with respect to the derivation of an equation
state applicable to anO(1) system in the immediate vicinity

TABLE III. The value of the universal quantityG4 calculated
for d53 Ising systems att50 from various sources.

Source L G4

Independent fit 16 21.4218
Independent fit 32 21.4082
Constrained fita 16,32 21.4267

Simulations

Tsypin @3# 16 21.424(3)
Tsypin @3# 32 21.410(3)
Barberet al. @22# 16 21.4239(6)
Barberet al. @22# 32 21.4095(18)

aHere we calculateG4 using the parametersu50.228 and c
50.432.

as

s.



be
es
-

fo
5
fu

fo
is
th
sa
su
ly

fre
th

rg
th
y,
s
n

en
th
s
(

tu
s

th

rs

e

ory
n-

lue

ite
al at
e.
he
h-
q.

e

the

e
nt

2908 PRE 58JOSEPH RUDNICK, WILLIAM LAY, AND DAVID JASNOW
of a critical point. In addition, there is every reason to
hopeful that low-order corrections to the zero loop expr
sion utilized in this work will allow for an even higher
precision fit to data.
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APPENDIX: EFFECT OF THE PREFACTOR ON G4

The prefactor represents a finite size correction to the
energy. To see that this is so, it suffices to exponentiate
prefactor. The contribution of the prefactor to the free ene
is nominally independent of the size of the system, while
leading-order terms scale as the system’s volume. Clearl
the thermodynamic limit, the prefactor is swamped by tho
terms. Nevertheless, the prefactor cannot be ignored, eve
the volume approaches infinity. That this is so is evid
when one plots out the order parameter distribution at
critical point. Given Eq.~2.4!, neglect of the prefactor lead
to an order parameter distribution at the critical pointt
50, h50! that has the form

P~M !}e2ALduM u2d/~d221h!
. ~A1!

Such a distribution does not manifest one important fea
of the critical point order parameter distribution, and that i
depression in the neighborhood ofM50. The absence of this
feature has an effect on the fit to data, and in addition, on
quantity G4 , defined in Eq.~6.2!. As an indication of the
importance of the prefactor on this universal ratio, we fi
calculate its value in the absence of this contribution. W
make use of the general relationship
-
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`

M pe2AM2d/~d221h!
dM

5A2~p11!~d221h!/2d
d221h

2d

3E
0

`

y~p11!~d221h!/2d21e2ydy

5
d221h

2d
A2~p11!/~d221h!/2dGS ~p11!~d221h!

2d D ,

~A2!

where the functionG is the standard gamma function. Th
universal combination in Eq.~6.2! is, then, equal to

G„5~d221h!/2d…G„d221h/2d…

G„3~d221h!/2d…
23. ~A3!

Whend53 andh50.037, one findsG4520.987 593. As a
comparison, the unrenormalized Ginzburg-Landau the
predictsG4520.811 56. By contrast, numerical studies i
dicateG4.21.4 @3,22#. While renormalization of the theory
changesG4 in the right direction, the full scaling form is
inadequate to the challenge of reproducing the correct va
of this quantity.

The defect in the above analysis lies in the fact that fin
size effects have been ignored. These effects are cruci
the critical point, where the bulk correlation length is infinit
As it turns out, the most important finite size effect is t
prefactor. The influence of the prefactor is dramatically hig
lighted when one ignores the finite size contribution to E
~5.1! for l * . If the coefficientc is set equal to zero, then on
finds immediately

el * 5~3uM2!21/~d221h!. ~A4!

This means that the order parameter distribution is of
form

P~M !}M ~22h!/~d221h! exp@2kM2d/~d221h!#. ~A5!

The quantityk in the above equation is a combination of th
size of the system,L, and the fourth-order coupling consta
u. This quantity scales out of the result forG4 in the same
way that the constantA divided out in the ratio in Eq.~A3!.
The result forG4 following from Eq. ~A5! is then
e

od of

ffects are
in the
G45
G„@22h15~d221h!#/2d…G„@22h1~d221h!#/2d…

G„@22h13~d221h!#/2d…
23. ~A6!

Inserting appropriate values ford andh into Eq.~A6!, we obtain aG4521.691 47. In utilizing the prefactor as thesolefinite
size correction, we have overshot the proper value ofG4 . Note, however, that the value obtained isindependent of system siz.
Even though the prefactor is a finite size correction to the free energy, in the case ofG4 it is fully as important as the
‘‘leading-order’’ contributions to the order parameter distribution.

As for the distributionP(M ), it is immediately evident that the prefactor leads to a depression in the neighborho
M50. In fact, the order parameter distribution is forced to go to zero atM50 by the prefactor in Eq.~A5!. This is a more
pronounced effect than is desired. The suppression of the order parameter distribution is reduced when finite size e
restored to Eq.~5.1!. It is the combination of these latter finite size effects and the finite size correction embodied
prefactor that yields a proper order parameter distribution at the critical point and a value ofG4 that is in agreement with
previous determinations of this quantity.
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